
1

Data Structures
Linked Lists and Trees



2

Real-Life Computational Problems

• All about organizing data!
– What shape the data should have to solve your 

problem
– Where the data should flow so it is available 

when you need it
– How your data can accommodate change and 

evolution of …
• … your own program
• … the requirements of your application



3

Support from Programming Languages

• E.g., Java knows about all kinds of
• Lists, trees, arrays, collections
• You tell it what you want and it does the rest

• E.g., Scheme is entirely built on lists
• Anything a list can do is easy!
• Anything a list cannot do is hard!

• E.g., Matlab is about matrices and vectors
• Extensive support for linear and non-linear algebras



4

In the case of C

• You are on your own!

• Only built-in tools
– Arrays
– structs and unions
– Functions

• Everything must be done “long-hand”



5

Theoretically

• Every computational problem can be solved 
with loops, arrays, non-recursive functions, 
and an unlimited amount of memory.

• I.e., in Fortran!

• In reality, most real-life problems are much, 
much too hard to solve that way



6

Common Data Structures for
Real-Life Problems

• Linked lists
• One-way
• Doubly-linked
• Circular

• Trees
• Binary
• Multiple branches

• Hash Tables
• Combine arrays and linked list
• Especially for searching for objects by value



7

Definitions

• Linked List
• A data structure in which each element is 

dynamically allocated and in which elements point 
to each other to define a linear relationship

• Singly- or doubly-linked
• Stack, queue, circular list

• Tree
• A data structure in which each element is 

dynamically allocated and in which each element 
has more than one potential successor

• Defines a partial order

Note: elements are usually the

same type (but not always).



8

Linked List

struct listItem {
type payload;
struct listItem *next;

};

payload
next

payload
next

payload
next

payload
next

Note: payload may be

multiple members.



9

Linked List (continued)

• Items of list are usually same type
• Generally obtained from malloc()

• Each item points to next item
• Last item points to null
• Need “head” to point to first item!

• “Payload” of item may be almost anything
• A single member or multiple members
• Any type of object whose size is known at compile time
• Including struct, union, char * or other pointers
• Also arrays of fixed size at compile time (see p. 214)



10

Usage of Linked Lists

• Not massive amounts of data
• Linear search is okay

• Sorting not necessary
• or sometimes not possible

• Need to add and delete data “on the fly”
• Even from middle of list

• Items often need to be added to or deleted 
from the “ends”



11

Linked List (continued)

struct listItem {
type payload;
struct listItem *next;

};
struct listItem *head;

payload
next

payload
next

payload
next

payload
next



12

Adding an Item to a List

struct listItem *p, *q;
• Add an item pointed to by q after item pointed to by p

– Neither p nor q is NULL

payload
next

payload
next

payload
next

payload
next

payload
next



13

Adding an Item to a List

listItem *addAfter(listItem *p, listItem *q){
q -> next = p -> next;
p -> next = q;
return p;

}

payload
next

payload
next

payload
next

payload
next

payload
next



14

Adding an Item to a List

listItem *addAfter(listItem *p, listItem *q){
q -> next = p -> next;
p -> next = q;
return p;

}

payload
next

payload
next

payload
next

payload
next

payload
next



15

Adding an Item to a List

listItem *addAfter(listItem *p, listItem *q){
q -> next = p -> next;
p -> next = q;
return p;

}

payload
next

payload
next

payload
next

payload
next

payload
next



16

Adding an Item to a List (continued)

listItem *addAfter(listItem *p, listItem *q){
if (p && q) {

q -> next = p -> next;
p -> next = q;

}
return p;

}

payload
next

payload
next

payload
next

payload
next

payload
next

Note test for non-null p and q



17

What about Adding an Item
before another Item?

struct listItem *p;
• Add an item before item pointed to by p (p != NULL)

payload
next

payload
next

payload
next

payload
next

payload
next



18

What about Adding an Item
before another Item?

• Answer:–
– Need to search list from beginning to find 

previous item
– Add new item after previous item



19

Doubly-Linked List

struct listItem {
type payload;
listItem *prev;
listItem *next;

};
struct listItem *head, *tail;

prev next
payload

prev next
payload

prev next
payload

prev next
payload

In-class e
xercise:– how to 

add a new item q after a list
 

item p



20

Other Kinds of List Structures

• Queue — FIFO (First In, First Out)
• Items added at end
• Items removed from beginning

• Stack — LIFO (Last In, First Out)
• Items added at beginning, removed from beginning

• Circular list
• Last item points to first item
• Head may point to first or last item
• Items added to end, removed from beginning



21

Definitions

• Linked List
• A data structure in which each element is 

dynamically allocated and in which elements point 
to each other to define a linear relationship

• Singly- or doubly-linked
• Stack, queue, circular list

• Tree
• A data structure in which each element is 

dynamically allocated and in which each element 
has more than one potential successor

• Defines a partial order



22

Binary Tree

• A linked list but with 
two links per item

struct treeItem {
type payload;
treeItem *left; 
treeItem *right;

};

left right
payload

left right
payload

left right
payload

left right
payload

left right
payloadleft right

payload

left right
payload



23

Binary Tree (continued)

• Binary tree needs a root
struct treeItem {
type payload;
treeItem *left; treeItem *right;

};
struct treeItem *root;

• Binary trees often drawn with root at top!
• Unlike ordinary trees in the forest
• More like the root systems of a tree



24

Binary Tree

struct treeItem {
type payload;
treeItem *left; 
treeItem *right;
};

struct treeItem *root;

left right
payload

left right
payload

left right
payload

left right
payload

left right
payloadleft right

payload

left right
payload



25

Purpose of a Tree

• (Potentially) a very large data structure
• Capable of storing very many items

• Need to find items by value
• I.e., need to search through the data structure to see 

if it contains an item with the value we want

• Need to add new items
• If value is not already in the tree, add a new item …
• …so that it can be easily found in future

• Why not use a linked list?



26

Searching and Adding to a Binary Tree
• Look recursively down 

sequence of branches until 
either
– Desired node is found; or
– Null branch is encountered

• Replace with ptr to new item

• Decide which branch to 
follow based on payload

left right
payload

left right
payload

left right
payload

left right
payload

left right
payloadleft right

payload

left right
payload



27

Example — Searching a Tree

typedef struct _treeItem {
char *word; // part of payload
int count; // part of payload
_treeItem *left, *right;
} treeItem;

treeItem *findItem(treeItem *p, char *w) {
if (p == NULL)

return NULL; // item not found

int c = strcmp(w, p->word);
if (c == 0)

return p;
else if (c < 0)

return findItem(p->left, w);
else

return findItem(p->right, w);
}



28

Why do this?

Example — Adding an Item

treeItem *addItem(treeItem *p, char *w) {
if (p == NULL){

p = malloc(sizeof(treeItem));
char *c = malloc(strlen(w)+1);
p->word = strcpy(c, w); 
p->count = 1;
p->left = p->right = NULL;
return p;

};
int c = strcmp(w, p->word);
if (c == 0)

p->count++;
else if (c < 0)

p->left = addItem(p->left, w);
else

p->right = addItem(p->right, w);
return p;

}



29

Binary Tree

• Question:– how many 
calls to addItem for 
a tree with 106 nodes?
– Assume balanced
– I.e., approx same number of 

nodes on each subtree

left right
payload

left right
payload

left right
payload

left right
payload

left right
payloadleft right

payload

left right
payload



30

Observation

• Problems like this occur in real life all the 
time

• Need to maintain a lot of data
• Usually random

• Need to search through it quickly
• Need to add (or delete) items dynamically
• Need to sort “on the fly”

• I.e., as you are adding and/or deleting items



31

Binary Trees (continued)

• Binary tree does not need to be “balanced”
• i.e., with approximate same # of nodes hanging from 

right or left

• However, it often helps with performance

• Multiply-branched trees
• Like binary trees, but with more than two links per 

node



32

Binary Trees (continued)

• Binary tree does not need to be “balanced”
• i.e., with approximate same # of nodes hanging from 

right or left

• However, it helps with performance
• Time to reach a leaf node is O(log2 n), where n is 

number of nodes in tree

• Multiply-branched trees
• Like binary trees, but with more than two links per 

node

“Big-O” notation:–

means “order of”



33

Binary Tree Example

• Payload:–
• char *word — the word at that node
• int count — number of occurrences
• Possibly other data

• When we are pointing to any node in the tree and 
have a word w, either:–

• w is the same word as at that node, so just increase its count,
• w is alphabetically before the word at that node, so look for it 

in the left subtree,
• w is alphabetically after the word at that node, so look for it in 

the right subtree, or
• The node is empty (i.e., null), so create one for that word.


