Data Structures
Linked Lists and Trees



Real-Life Computational Problems

 All about organizing data!

— What shape the data should have to solve your
problem

— Where the data should flow so it 1s available
when you need it

— How your data can accommodate change and
evolution of ...
* ... your own program

* ... the requirements of your application



Support from Programming Languages

* E.g., Java knows about all kinds of
 Lists, trees, arrays, collections

* You tell 1t what you want and 1t does the rest

* E.g., Scheme 1s entirely built on lists

* Anything a list can do 1s easy!

* Anything a list cannot do 1s hard!
* E.g., Matlab 1s about matrices and vectors

« Extensive support for linear and non-linear algebras



In the case of C

* You are on your own!

* Only built-1n tools
— Arrays
— structs and unions

— Functions

» Everything must be done *“long-hand”



Theoretically

» Every computational problem can be solved
with loops, arrays, non-recursive functions,
and an unlimited amount of memory.

e ].e., in Fortran!

* In reality, most real-life problems are much,
much too hard to solve that way



Common Data Structures for
Real-Life Problems

* Linked lists
* One-way
e Doubly-linked
e Circular

* Trees
* Binary

* Multiple branches
» Hash Tables

 Combine arrays and linked list
» Especially for searching for objects by value



o Linked List

* A data structure in which each element 1s
dynamically allocated and in which elements point
to each other to define a /inear relationship

* Singly- or doubly-linked
« Stack, queue, circular list

e Tree

* A data structure in which each element 1s
dynamically allocated and in which each element
has more than one potential successor

* Defines a partial order



};

type payload;
struct listItem *next;




Linked List (continued)

Items of list are usually same type
* Generally obtained from malloc ()

Each item points to next item
Last item points to null
Need “head” to point to first item!

“Payload” of item may be almost anything
A single member or multiple members
* Any type of object whose size 1s known at compile time
 Including struct, union, char * or other pointers
« Also arrays of fixed size at compile time (see p. 214)



Usage of Linked Lists

Not massive amounts of data

e Linear search 1s okay

Sorting not necessary

e or sometimes not possible

Need to add and delete data ““on the fly”

 Even from middle of list

Items often need to be added to or deleted
from the “ends”
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Linked List (continued)

struct listItem {

type payload;

struct listItem *next;
};

struct listItem *head;

—
Ja—



Adding an Item to a List

struct listItem *p, *q;
after item pointed to by p

* Add an item pointed t@ by
— Neither p nor qis NUL
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Adding an Item to a List

listItem *addAfter (listItem *p, listItem *q) {
q -> next
P —-> next
return p;

p —-> next;
g,




Adding an Item to a List

listItem *addAfter (listItem *p, listItem *q) {
q -> next
P —-> next
return p;

p —-> next;
g,




Adding an Item to a List

listItem *addAfter (listItem *p, listItem *q) {
q -> next p —-> next;
P —-> next q;
return p;




> next;

return p;

}




What about Adding an Item
before another Item?

struct listItem *p;

e Add an item before item




What about Adding an Item
before another Item?

e Answer:.—

— Need to search list from beginning to find
previous 1tem

— Add new item after previous item
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Doubly-Linked List

struct listItem {
type payload;
listItem *prev;
listItem *next;

};

struct listItem *head, *tail;
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Other Kinds of List Structures

¢ Queue — FIFO (First In, First Out)
* [tems added at end

 [tems removed from beginning

o Stack — LIFO (Last In, First Out)

 Items added at beginning, removed from beginning

» Circular list
e Last item points to first item
« Head may point to first or last item

 Items added to end, removed from beginning
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Definitions

Tree

* A data structure in which each element 1s
dynamically allocated and in which each element
has more than one potential successor

* Defines a partial order
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Binary Tree

* A linked list but with
two links per 1tem

struct treelItem {
type payload;
treeltem *left;
treeltem *right;

};



Binary Tree (continued)

* Binary tree needs a root

struct treeltem {
type payload;
treeItem *left; treelItem *right;

};

struct treelItem *root;

* Binary trees often drawn with root at top!

* Unlike ordinary trees in the forest
* More like the root systems of a tree
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Binary Tree

struct treeltem {
type payload;
treeItem *left;
treeItem *right;
};

struct treeltem *root;



Purpose of a Tree

(Potentially) a very large data structure
» Capable of storing very many items

Need to find items by value

* I.e., need to search through the data structure to see
if 1t contains an 1tem with the value we want

Need to add new 1items

e If value 1s not already in the tree, add a new item ...

e ...so that 1t can be easily found 1n future

Why not use a linked list?
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Searching and Adding to a Binary Tree

* Look recursively down
sequence of branches until
either

— Desired node is found; or

— Null branch is encountered
» Replace with ptr to new item

e Decide which branch to
follow based on payload



Example — Searching a Tree

typedef struct treeltem {
char *word; // part of payload
int count; // part of payload
_treeltem *left, *right;
} treeltem;

treeItem *findItem(treeItem *p, char *w) {
if (p == NULL)
return NULL; // item not found

int ¢ = strcmp(w, p->word)
if (¢ == 0)
return p;
else if (c < 0)
return findItem (p->left, w);
else
return findItem(p->right, w);
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Example — Adding an Item

treeItem *addItem(treeltem *p, char *w) {
if (p == NULL) {

};

p = malloc(sizeof (treeltem));

char *c = malloc(strlen(w)+1) ; :
p->word = strcpy(c, w); VVhY(k)ﬂnS?
p->count = 1;

p->left = p->right = NULL;

return p;

int ¢ = strcmp(w, p->word);
if (¢ == 0)

p->count++;

else if (c < 0)

p->left = addItem(p->left, w);

else

p->right = addItem(p->right, w);

return p;
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Binary Tree

* Question:— how many
calls to addItem for

a tree with 10° nodes?

— Assume balanced

— l.e., approx same number of
nodes on each subtree
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Observation

Problems like this occur 1n real life all the
fime
Need to maintain a lot of data

e Usually random

Need to search through 1t quickly

Need to add (or delete) items dynamically
Need to sort “on the fly”

 I.e., as you are adding and/or deleting 1tems
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Binary Trees (continued)

* Binary tree does not need to be “balanced”

* 1.e., with approximate same # of nodes hanging from
right or left

* However, 1t often helps with performance

* Multiply-branched trees

 Like binary trees, but with more than two links per
node
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Binary Trees (continued)

* Binary tree does not need to be “balanced”

* 1.e., with approximate same # of nodes hanging from
right or left

* However, 1t helps with perfo

* Time to reach a leaf node 1s O(log, n), where n 1s
number of nodes 1n tree

* Multiply-branched trees

 Like binary trees, but with more than two links per
node
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Binary Tree Example

* Payload:—
e char *word — the word at that node
e int count — number of occurrences

* Possibly other data

 When we are pointing to any node 1n the tree and
have a word w, either:—

* w 1s the same word as at that node, so just increase its count,

« w 1s alphabetically before the word at that node, so look for it
in the left subtree,

» w 1s alphabetically affer the word at that node, so look for it in
the right subtree, or

* The node 1s empty (i.e., null), so create one for that word.
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