Data Structures
Linked Lists and Trees



Real-Life Computational Problems

 All about organizing data!

— What shape the data should have to solve your
problem

— Where the data should flow so it 1s available
when you need it

— How your data can accommodate change and
evolution of ...
* ... your own program

* ... the requirements of your application



Support from Programming Languages

* E.g., Java knows about all kinds of
 Lists, trees, arrays, collections

* You tell 1t what you want and 1t does the rest

* E.g., Scheme 1s entirely built on lists

* Anything a list can do 1s easy!

* Anything a list cannot do 1s hard!
* E.g., Matlab 1s about matrices and vectors

« Extensive support for linear and non-linear algebras



In the case of C

* You are on your own!

* Only built-1n tools
— Arrays
— structs and unions

— Functions

» Everything must be done *“long-hand”



Theoretically

» Every computational problem can be solved
with loops, arrays, non-recursive functions,
and an unlimited amount of memory.

e ].e., in Fortran!

* In reality, most real-life problems are much,
much too hard to solve that way



Common Data Structures for
Real-Life Problems

* Linked lists
* One-way
e Doubly-linked
e Circular

* Trees
* Binary

* Multiple branches
» Hash Tables

 Combine arrays and linked list
» Especially for searching for objects by value



o Linked List

* A data structure in which each element 1s
dynamically allocated and in which elements point
to each other to define a /inear relationship

* Singly- or doubly-linked
« Stack, queue, circular list

e Tree

* A data structure in which each element 1s
dynamically allocated and in which each element
has more than one potential successor

* Defines a partial order



};

type payload;
struct listItem *next;




Linked List (continued)

Items of list are usually same type
* Generally obtained from malloc ()

Each item points to next item
Last item points to null
Need “head” to point to first item!

“Payload” of item may be almost anything
A single member or multiple members
* Any type of object whose size 1s known at compile time
 Including struct, union, char * or other pointers
« Also arrays of fixed size at compile time (see p. 214)



Usage of Linked Lists

Not massive amounts of data

e Linear search 1s okay

Sorting not necessary

e or sometimes not possible

Need to add and delete data ““on the fly”

 Even from middle of list

Items often need to be added to or deleted
from the “ends”

10



Linked List (continued)

struct listItem {

type payload;

struct listItem *next;
};

struct listItem *head;

—
Ja—



Adding an Item to a List

struct listItem *p, *q;
after item pointed to by p

* Add an item pointed t@ by
— Neither p nor qis NUL

12—




Adding an Item to a List

listItem *addAfter (listItem *p, listItem *q) {
q -> next
P —-> next
return p;

p —-> next;
g,




Adding an Item to a List

listItem *addAfter (listItem *p, listItem *q) {
q -> next
P —-> next
return p;

p —-> next;
g,




Adding an Item to a List

listItem *addAfter (listItem *p, listItem *q) {
q -> next p —-> next;
P —-> next q;
return p;




> next;

return p;

}




What about Adding an Item
before another Item?

struct listItem *p;

e Add an item before item




What about Adding an Item
before another Item?

e Answer:.—

— Need to search list from beginning to find
previous 1tem

— Add new item after previous item

18



Doubly-Linked List

struct listItem {
type payload;
listItem *prev;
listItem *next;

};

struct listItem *head, *tail;

19



Other Kinds of List Structures

¢ Queue — FIFO (First In, First Out)
* [tems added at end

 [tems removed from beginning

o Stack — LIFO (Last In, First Out)

 Items added at beginning, removed from beginning

» Circular list
e Last item points to first item
« Head may point to first or last item

 Items added to end, removed from beginning

20



Definitions

Tree

* A data structure in which each element 1s
dynamically allocated and in which each element
has more than one potential successor

* Defines a partial order

21



Binary Tree

* A linked list but with
two links per 1tem

struct treelItem {
type payload;
treeltem *left;
treeltem *right;

};



Binary Tree (continued)

* Binary tree needs a root

struct treeltem {
type payload;
treeItem *left; treelItem *right;

};

struct treelItem *root;

* Binary trees often drawn with root at top!

* Unlike ordinary trees in the forest
* More like the root systems of a tree

23



Binary Tree

struct treeltem {
type payload;
treeItem *left;
treeItem *right;
};

struct treeltem *root;



Purpose of a Tree

(Potentially) a very large data structure
» Capable of storing very many items

Need to find items by value

* I.e., need to search through the data structure to see
if 1t contains an 1tem with the value we want

Need to add new 1items

e If value 1s not already in the tree, add a new item ...

e ...so that 1t can be easily found 1n future

Why not use a linked list?

25



Searching and Adding to a Binary Tree

* Look recursively down
sequence of branches until
either

— Desired node is found; or

— Null branch is encountered
» Replace with ptr to new item

e Decide which branch to
follow based on payload



Example — Searching a Tree

typedef struct treeltem {
char *word; // part of payload
int count; // part of payload
_treeltem *left, *right;
} treeltem;

treeItem *findItem(treeItem *p, char *w) {
if (p == NULL)
return NULL; // item not found

int ¢ = strcmp(w, p->word)
if (¢ == 0)
return p;
else if (c < 0)
return findItem (p->left, w);
else
return findItem(p->right, w);

27



Example — Adding an Item

treeItem *addItem(treeltem *p, char *w) {
if (p == NULL) {

};

p = malloc(sizeof (treeltem));

char *c = malloc(strlen(w)+1) ; :
p->word = strcpy(c, w); VVhY(k)ﬂnS?
p->count = 1;

p->left = p->right = NULL;

return p;

int ¢ = strcmp(w, p->word);
if (¢ == 0)

p->count++;

else if (c < 0)

p->left = addItem(p->left, w);

else

p->right = addItem(p->right, w);

return p;

28




Binary Tree

* Question:— how many
calls to addItem for

a tree with 10° nodes?

— Assume balanced

— l.e., approx same number of
nodes on each subtree

. 29



Observation

Problems like this occur 1n real life all the
fime
Need to maintain a lot of data

e Usually random

Need to search through 1t quickly

Need to add (or delete) items dynamically
Need to sort “on the fly”

 I.e., as you are adding and/or deleting 1tems

30



Binary Trees (continued)

* Binary tree does not need to be “balanced”

* 1.e., with approximate same # of nodes hanging from
right or left

* However, 1t often helps with performance

* Multiply-branched trees

 Like binary trees, but with more than two links per
node

31



Binary Trees (continued)

* Binary tree does not need to be “balanced”

* 1.e., with approximate same # of nodes hanging from
right or left

* However, 1t helps with perfo

* Time to reach a leaf node 1s O(log, n), where n 1s
number of nodes 1n tree

* Multiply-branched trees

 Like binary trees, but with more than two links per
node

32



Binary Tree Example

* Payload:—
e char *word — the word at that node
e int count — number of occurrences

* Possibly other data

 When we are pointing to any node 1n the tree and
have a word w, either:—

* w 1s the same word as at that node, so just increase its count,

« w 1s alphabetically before the word at that node, so look for it
in the left subtree,

» w 1s alphabetically affer the word at that node, so look for it in
the right subtree, or

* The node 1s empty (i.e., null), so create one for that word.

33



